Grünbaum's inequality for sections
نویسندگان
چکیده
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولFinite Sections of Weighted Carleman’s Inequality
We study finite sections of weighted Carleman’s inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant.
متن کاملA NORM INEQUALITY FOR CHEBYSHEV CENTRES
In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملResults of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2018
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2018.04.001